FINAL

SUNFLOWER ARMY AMMUNITION PLANT, KANSAS
ENVIRONMENTAL REMEDIATION

Final

Site Wide Work Plan

Contract No.: W912DQ-16-D-3000
Delivery Order No.: W912DQ18F3021

Prepared for:

U.S. Army Corps of Engineers
Kansas City District
601 East 12th Street
Kansas City, MO 64106

Prepared by:

CAPE Environmental Management Inc
500 Pinnacle Court, Suite 100
Norcross, GA 30071

AUGUST 2019
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>2</td>
</tr>
<tr>
<td>3.0</td>
<td>2</td>
</tr>
<tr>
<td>4.0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1: Site-Specific Corrective Actions</td>
<td>4</td>
</tr>
<tr>
<td>4.1</td>
<td>5</td>
</tr>
<tr>
<td>4.2</td>
<td>5</td>
</tr>
<tr>
<td>4.3</td>
<td>5</td>
</tr>
<tr>
<td>4.4</td>
<td>5</td>
</tr>
<tr>
<td>4.5</td>
<td>6</td>
</tr>
<tr>
<td>5.0</td>
<td>6</td>
</tr>
<tr>
<td>5.1</td>
<td>6</td>
</tr>
<tr>
<td>5.2</td>
<td>6</td>
</tr>
<tr>
<td>5.3</td>
<td>7</td>
</tr>
<tr>
<td>5.4</td>
<td>7</td>
</tr>
<tr>
<td>5.5</td>
<td>8</td>
</tr>
<tr>
<td>5.6</td>
<td>9</td>
</tr>
<tr>
<td>5.7</td>
<td>9</td>
</tr>
<tr>
<td>5.8</td>
<td>10</td>
</tr>
<tr>
<td>5.9</td>
<td>10</td>
</tr>
<tr>
<td>6.0</td>
<td>11</td>
</tr>
<tr>
<td>6.1</td>
<td>11</td>
</tr>
<tr>
<td>6.2</td>
<td>11</td>
</tr>
<tr>
<td>7.0</td>
<td>12</td>
</tr>
<tr>
<td>8.0</td>
<td>12</td>
</tr>
<tr>
<td>8.1</td>
<td>12</td>
</tr>
<tr>
<td>8.2</td>
<td>13</td>
</tr>
<tr>
<td>8.3</td>
<td>13</td>
</tr>
<tr>
<td>8.4</td>
<td>13</td>
</tr>
<tr>
<td>9.0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 2: Anticipated Waste Streams and Quantities</td>
<td>14</td>
</tr>
<tr>
<td>9.1</td>
<td>15</td>
</tr>
<tr>
<td>9.2</td>
<td>15</td>
</tr>
<tr>
<td>9.3</td>
<td>16</td>
</tr>
<tr>
<td>9.4</td>
<td>17</td>
</tr>
<tr>
<td>9.5</td>
<td>18</td>
</tr>
<tr>
<td>10.0</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>19</td>
</tr>
<tr>
<td>10.2</td>
<td>20</td>
</tr>
<tr>
<td>10.3</td>
<td>21</td>
</tr>
</tbody>
</table>
10.4 Disposal Approach .. 21
10.5 Dewatering Operation Equipment and Materials ... 21

11.0 PROJECT SCHEDULE AND SEQUENCE ... 22

12.0 DOCUMENTATION AND REPORTING ... 22
 12.1 Quality Control Summary Report ... 22
 12.2 Site-Specific Work Plans ... 22
 12.3 Corrective Measures Completion Reports ... 22

13.0 REFERENCES ... 23

TABLES

Table 1 – Site Specific Corrective Actions
Table 2 – Anticipated Waste Streams and Quantities

FIGURES

Figure 1 – Site Map

APPENDICES

A Communication Plan
LIST OF ABBREVIATIONS AND ACRONYMS

AAP Army Ammunition Plant
ACM asbestos-containing material
AHA activity hazard analysis
AOC Area of Concern
APP Accident Prevention Plan
ASTM American Society for Testing and Materials
BER Bureau of Environmental Remediation
bgs below ground surface
C&D Construction and Demolition
CAPE Cape Environmental Management Inc
CFR Code of Federal Regulations
CHMM Certified Hazardous Materials Manager
CHSM Corporate Health and Safety Manager
CMI Corrective Measures Implementation
CMS Corrective Measures Study
COC chemical of concern
COR Contracting Officer’s Representative
CQC Contractor Quality Control
CQCM Contractor Quality Control Manager
CQCSM Contractor Quality Control Systems Manager
CSM Conceptual Site Model
CY cubic yard(s)
DOT United States Department of Transportation
DQCR Daily Quality Control Report
EPA United States Environmental Protection Agency
ft foot/feet
KDHE Kansas Department of Health and Environment
KO Contracting Officer
NC, NG, NQ nitrocellulose, nitroglycerin, nitroguanidine
NPDES National Pollutant Discharge Elimination System
PDI pre-design investigation
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E.</td>
<td>Professional Engineer</td>
</tr>
<tr>
<td>PM</td>
<td>Project Manager</td>
</tr>
<tr>
<td>PMP</td>
<td>Project Management Professional</td>
</tr>
<tr>
<td>POC</td>
<td>point of contact</td>
</tr>
<tr>
<td>PPE</td>
<td>personal protective equipment</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>QCM</td>
<td>Quality Control Manager</td>
</tr>
<tr>
<td>QCSR</td>
<td>Quality Control Systems Report</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RFI</td>
<td>Request for Information</td>
</tr>
<tr>
<td>RMS</td>
<td>Resident Management System</td>
</tr>
<tr>
<td>RSA</td>
<td>Remediation Services Agreement</td>
</tr>
<tr>
<td>RSK</td>
<td>Risk-Based Standard</td>
</tr>
<tr>
<td>SFAAP</td>
<td>Sunflower Army Ammunition Plant</td>
</tr>
<tr>
<td>S&H</td>
<td>Safety and Health</td>
</tr>
<tr>
<td>Shealy</td>
<td>Shealy Environmental Services, Inc.</td>
</tr>
<tr>
<td>SOW</td>
<td>Scope of Work</td>
</tr>
<tr>
<td>SRL</td>
<td>Sunflower Redevelopment Limited Liability Corporation</td>
</tr>
<tr>
<td>SSHO</td>
<td>Site Safety and Health Officer</td>
</tr>
<tr>
<td>SSHP</td>
<td>Site-Specific Safety Management Plan</td>
</tr>
<tr>
<td>SVOC</td>
<td>semi-volatile organic compound</td>
</tr>
<tr>
<td>SWMU</td>
<td>Solid Waste Management Unit</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>T&D</td>
<td>transportation and disposal</td>
</tr>
<tr>
<td>TBD</td>
<td>to be determined</td>
</tr>
<tr>
<td>TMCL</td>
<td>Target Media Cleanup Level</td>
</tr>
<tr>
<td>TO</td>
<td>task order</td>
</tr>
<tr>
<td>TPH</td>
<td>total petroleum hydrocarbons</td>
</tr>
<tr>
<td>UFP-QAPP</td>
<td>Uniform Federal Policy – Quality Assurance Project Plan</td>
</tr>
<tr>
<td>USACE</td>
<td>United States Army Corps of Engineers</td>
</tr>
<tr>
<td>WP</td>
<td>Work Plan</td>
</tr>
</tbody>
</table>
1.0 SIGNATURE SHEET

This section lists the individuals responsible for drafting, reviewing, implementing, and approving this Site Wide Work Plan (WP). Signature indicates approval of the document.

Signature: __
Date: 7/31/2019
Meg Greenwald, Senior Engineer, CAPE

Signature: __
Date: 7/31/2019
Krishna Nalavala, Project Manager, CAPE

Signature: __
Date: 7/31/2019
Joe Guggenberger, Contractor Quality Control System Manager, CDM

Signature: __
Date:
Robert Loughran, Contracting Officer Representative, USACE

Signature: __
Date:
Kathy Baker, Project Manager, USACE

Signature: __
Date:
Mark Blair, AEC

Signature: __
Date:
Marc Radloff, KDHE
2.0 EXECUTIVE SUMMARY

Cape Environmental Management Inc (CAPE) has been issued Task Order W912DQ18F3021 under Contract Number W912DQ-16-D-3000 by the Kansas City District of the United States Army Corps of Engineers (USACE). Under this contract, CAPE will perform investigative and environmental remediation activities to address environmental contamination at sixteen (16) Solid Waste Management Units (SWMUs) and six (6) Areas of Concern (AOCs) at the Former Sunflower Army Ammunition Plant (SFAAP), located near DeSoto (Johnson County), Kansas (USACE, 2018). SWMUs 15/16 and SWMUs 22/32 are combined, resulting in a total of 20 sites.

This Site Wide Work Plan (Work Plan) has been prepared by CAPE to meet the requirements of the Contract Award Document dated 25 September 2018. This Work Plan provides the general site-wide plans that will be used to complete project field activities. In particular, this document contains the following:

- Excavation and Material Handling Plan
- Spill Prevention and Control Plan
- Dewatering Plan
- Waste Management, Transportation, and Control Plan

Excavation limits, confirmation sampling locations, sample analyses, identification of site-specific features, site-specific details about contamination, and data quality objectives can be found in the site-specific work plans, submitted separately from this document.

For each site addressed under this contract, corrective action objectives were identified by previous decision documents (i.e., Resource Conservation and Recovery Act [RCRA] Facility Investigation Reports, Corrective Measures Studies (CMSs), and Memoranda of Record) and corrective action alternatives have been selected by the United States Army. The final approval of the selected corrective action is in process.

3.0 INTRODUCTION AND BACKGROUND

SFAAP encompasses approximately 9,065 acres near DeSoto, Kansas, in the northwest corner of Johnson County. The area surrounding the plant is primarily privately-owned agricultural land, which is sparsely populated. The plant is bound on the east by Spoon and Kill Creeks and on the west by Captain Creek. SFAAP was built in 1942 and began manufacturing base explosives compounds for use as propellants: nitroglycerine (NG), nitrocellulose (NC), and nitroguanidine (NQ). Production of rocket propellant ended in 1971; only nitric acid, sulfuric acid, oleum, and NQ were manufactured between 1971 and 1992. SFAAP was transferred to the Sunflower Redevelopment Limited Liability Corporation (SRL) in August 2005 and many areas of the property are currently leased for non-military uses.

SFAAP includes sixty-seven (67) RCRA SWMUs and twenty-four (24) AOCs. The SWMUs and AOCs located at SFAAP include surface impoundments, ditches, sumps, munitions proving ranges, burning grounds, and landfills. As a result of historical practices, soil concentrations at these locations exceed residential Target Media Cleanup Levels (TMCLs) for various contaminants of concern (COCs), which include: metals, total petroleum hydrocarbons (TPH),
dioxins/furans, semi-volatile organic compounds (SVOCs), explosives, nitrate/nitrite, ammonia, and non-friable asbestos-containing materials (ACM).

This project entails environmental remediation of sixteen (16) SWMUs and six (6) AOCs that will be conducted with oversight from the USACE and regulatory coordination through the Kansas Department of Health and the Environment (KDHE), Bureau of Environmental Remediation (BER), and the United States Environmental Protection Agency (EPA) Region VII. The Corrective Measures Implementation (CMI) requirements for this contract are based on past decision documents (i.e., RCRA Facility Investigation Reports, CMSs, and Memoranda of Record).

4.0 PROJECT SCOPE AND OBJECTIVES

Under this Task Order, CAPE is responsible for completion of the pre-design investigation (PDI) data gap soil sampling and subsequent excavation and disposal of soil where contamination has not been adequately delineated; excavation and disposal of soil where the extent of contamination has been previously delineated; removal of contaminated surface water and sediment; removal of debris and ACM; waste characterization sampling and ex-situ treatment of excavated soils and sediments if required; backfill; compaction; site and stream restoration; and reporting for the sites.

The primary objectives are as follows:

- Prevent potential future residents or workers from ingestion, inhalation, or coming into dermal contact with COCs in soil, sediment, and surface water above acceptable exposure levels.
- Restore the contaminated sites to achieve residential cleanup levels, which will allow for unlimited use of and unrestricted exposure to the soil.
Table 1: Site-Specific Corrective Actions

<table>
<thead>
<tr>
<th>Site</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOC 18</td>
<td>Excavation and disposal of less than 100 cubic yards (CY) (estimated) of impacted soil</td>
</tr>
<tr>
<td>AOC 20</td>
<td>Excavation and disposal of up to 100 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>AOC 22</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 2,800 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>SWMU 22/32</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 3,500 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>SWMU 53</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 270 CY (estimated) of impacted soil, and removal of 70 CY (estimated) of construction debris and ACM. Includes visual investigation of Historical Disposal Area and Burn Area and post-excavation confirmation sampling in these areas as needed based on ultimate excavation extents.</td>
</tr>
<tr>
<td>SWMU 54</td>
<td>PDI sampling (water, soil, and sediment) for site COCs, subsequent excavation and disposal of up to 10 CY of impacted surface soil, abandonment of cistern FTW-3, and removal of water and sediment</td>
</tr>
<tr>
<td>SWMU 64</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 3,400 CY (estimated) of impacted soil, and removal of 2,200 CY (estimated) of construction debris and ACM</td>
</tr>
<tr>
<td>SWMU 1</td>
<td>Excavation and disposal of up to 20 CY (estimated) of ACM waste and impacted soil and removal of water and sediment</td>
</tr>
<tr>
<td>SWMU 50</td>
<td>Excavation and disposal of up to 17,000 CY (estimated) of ACM waste and impacted soil</td>
</tr>
<tr>
<td>SWMU 69</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 2,600 CY (estimated) of ACM waste and impacted soil</td>
</tr>
<tr>
<td>SWMUs 15/16,</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 600 CY (estimated) of impacted soil, sediment, and waste removal of water</td>
</tr>
<tr>
<td>AOC 10</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 600 CY (estimated) of impacted soil, sediment, and waste removal of water</td>
</tr>
<tr>
<td>SWMU 46</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 800 CY (estimated) of impacted soil, and removal of 330 CY (estimated) of asphalt</td>
</tr>
<tr>
<td>AOC 5</td>
<td>PDI soil sampling for site COCs, subsequent excavation and disposal of up to 1,800 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>SWMU 40</td>
<td>Excavation and disposal of up to 14,200 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>SWMU 30</td>
<td>PDI sampling for site COCs; excavation and disposal of up to 15 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>SWMU 57</td>
<td>Excavation and disposal of up to 60 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>SWMU 63</td>
<td>PDI soil sampling for lead paint; excavation and disposal of up to 1750 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>SWMU 67</td>
<td>PDI sampling for site COCs, excavation and disposal of up to 9,000 CY (estimated) of impacted soil</td>
</tr>
<tr>
<td>AOC 15</td>
<td>Chromium speciation sample; excavation and disposal of up to 330 CY (estimated) of impacted soil</td>
</tr>
</tbody>
</table>
It is important to note that the Army does not sample for and/or remediate pesticides contamination in areas where documentation indicates that pesticides were applied in accordance with their label-specific manufacturer’s instructions. This is pursuant to the 2005 Remediation Services Agreement (RSA) between the U.S. Army and the SRL, which states that SRL will “assume the responsibility for remediation requirements under the Consent Order that exceed the scope of this Contract at no cost to the Government including but not limited to…routine application of pesticides in accordance with manufacturer’s instructions.” Therefore, this project will not address impacts from the application of pesticides at SFAAP.

4.1 **Summary Scope of Work**

The objective for each site is to complete the corrective actions specified in the contract.

For sites where no PDI is required, corrective action measures include:

- Excavation of soil exhibiting COCs above TMCLs and/or ACM waste
- RCRA waste characterization sampling and off-site disposal
- Post-extraction confirmation sampling
- Characterization of backfill
- Backfill and site restoration

4.2 **Soil Excavation**

CAPE will excavate soil at 15 sites within SFAAP, which are shown on Figure 1. Details of each delineated site are shown in the site-specific work plans, which will be submitted separately. Contaminated soil and ACM will be excavated/removed to achieve the TMCLs listed in the Uniform Federal Policy – Quality Assurance Project Plan (UFP-QAPP). Confirmation samples will be collected and analyzed to ensure TMCLs are achieved. Waste characterization analyses will be completed for soil/sediment prior to transportation and off-site disposal. Analytical methods and laboratory limits are provided in the UFP-QAPP.

4.3 **Surface Water Removal**

Surface water will be removed from SWMU 1 and SWMU 40. At SWMU 1, approximately 25,000 gallons of water located in the scale house basement and attached scale will be containerized and disposed. At SWMU 40, approximately 40,000 gallons of retained water located in the evaporative pond will be containerized and disposed. Waste characterization analyses will be completed for surface water prior to transportation and off-site disposal. Analytical methods and laboratory limits are provided in the UFP-QAPP.

4.4 **Off-Site Soil and Water Disposal**

Excavated soil will be analyzed to determine shipping and disposal requirements. Waste soil and wastewater will be transported and disposed offsite at licensed, approved disposal
facilities. Waste characterization analyses will be completed for all environmental media requiring off-site disposal prior to transportation/removal from the site.

4.5 Site Restoration and Demobilization

After final confirmation sample results are verified, the final extent of excavations will be surveyed and the excavations will be backfilled to their original conditions. Pre-approved, certified-clean backfill will be imported to complete site restoration, and the surface will be graded level with the existing ground surface.

5.0 PROJECT RESOURCES

This section identifies the key CAPE resources that are in place to perform this Task Order. The project organization chart that identifies the structure and key personnel assigned to the project is shown in the UFP-QAPP. Responsibilities of key personnel are described in more detail in the SFAAP UFP-QAPP (CAPE, 2019). A communication plan detailing communication pathways between CAPE, the Army, and all other relevant personnel is included as Appendix A.

5.1 Project Manager

The PM, Krishna Nalavala, CHMM, PMP, will have the overall responsibility for all technical, contractual, safety, and administrative matters for CAPE under this contract. He will ensure that a high degree of client responsiveness is maintained. Additionally, he will be responsible for reviewing and approving plans, overseeing staff selection, monitoring contract and task funds and schedules, and implementing quality assurance (QA)/QC processes. He is also responsible for the overall conformance of the work to USACE requirements and project work plans. This responsibility includes the preparation and timely submission of all required work plans. The PM will also see that the project schedule and budget allow sufficient resources to properly construct and document the required elements of the work in accordance with the approved work plans.

The PM will be the primary contact between USACE and CAPE. He will be in regular contact with the Contracting Officer’s Representative (COR) regarding project status, potential schedule and cost impacts, and QC issues.

5.2 Contractor Quality Control Systems Manager

The Contractor Quality Control Systems Manager (CQCSM), Joe Guggenberger, is responsible for the overall management of the Contractor Quality Control (CQC) System and for implementing the CQC Plan, and has the authority to act independently in all QC matters. The responsibilities of the CQCSM include:

- Management of the performance of all onsite and offsite inspections and testing
- Evaluation of the results of the inspections and testing
- Notification of the PM of acceptance or rejection of the work
Management of the documentation of all inspections and testing, and notifications to project management through daily quality control reports (DQCRs)

Review of all required submittals relating to QC, and forwarding of all submittals to the COR

Inspection of work in the field

Preparation and submission of RFIs

Maintenance of the Resident Management System (RMS) to ensure information is current/up to date

Preparation and/or review of submittals

Coordination of three-phase inspections

Preparation of DQCRs

Tracking and management of deficiencies

The CQCSM will report to the CAPE Corporate Director of QC, and will communicate directly with the Site Superintendent and PM. The CQCSM will have the authority to suspend work that does not meet the standards established by the work plans. Should modifications or revisions to the plans relating to QC be required, the CQCSM will prepare a request for modification to revisions, and will submit the request to the COR. The CQCSM will ensure that approval of the modification or revision is received before allowing the modifications to occur in the field. The CQCSM will have no duties other than QC and will be on site when work is being performed.

The Alternate CQCSM will assume all of the responsibilities of the CQCSM in the event of the CQCSM’s absence.

5.3 Corporate Quality Control Manager

The Corporate Quality Control Manager (CQCM), Henry Vaca, will supervise the QC activities of the CQCSM. In addition, the CQCM will ensure that additional QC resource personnel are provided to the project to provide oversight on specialized tasks, as deemed necessary. All QC records and activities are subject to review by the CQCM.

5.4 Corporate Health and Safety Manager

The Corporate Health and Safety Manager (CHSM) for CAPE will be responsible for the overall safety program. The CHSM ensures that all elements of the Accident Prevention Plans (APPs)/Site-Specific Safety and Health (S&H) Plans (SSHPs) are implemented and enforced.

The CHSM has experience in hazardous waste site operations. The CHSM will have the following responsibilities:
Interfacing with the PM about project execution, S&H-related issues, and QC issues
- Approving the SSHP and any amendments
- Approving revised or new S&H protocols for site activities
- Monitoring compliance with the SSHP
- Ensuring that all CAPE personnel and subcontractors designated to work on the task order (TO) are qualified according to CAPE medical surveillance and training, and USACE requirements
- Determining and implementing personnel disciplinary actions for safety violations
- Approving the appointment of the Site Safety and Health Officer (SSHO) and any replacement SSHOs.

The CHSM will have the authority to:

- Stop site activities if an imminently dangerous situation exists; the emergency situation will be immediately reviewed with the PM and the Site Superintendent/SSHO
- Direct personnel to change a work practice if it is determined to be hazardous to the S&H of site personnel
- Remove personnel from the project if their actions endanger their S&H, or the S&H of their co-workers.

5.5 Site Safety and Health Officer

The SSHO for CAPE will implement the on-site safety program. The SSHO reports directly to the CHSM. The SSHO provides onsite S&H supervision and enforcement; site orientation safety briefings, activity hazard analysis (AHA) review, safety meetings, and safety training; site hazards and established S&H control measures; daily safety inspections; air monitoring and sampling; supervision of excavation, trenching, and/or confined space entry activities; investigation of incidents and report preparation; implementation of emergency response plans; and monitoring of proper selection and use of personal protective equipment (PPE).

The SSHO will serve as an advisor to the PM in matters regarding S&H. The SSHO for this project will be primarily responsible for the technical and administrative functions relative to S&H during site activities. The SSHO will have the following responsibilities:

- Ensuring that all site activities are performed in a manner consistent with the APP
- Interfacing with the CHSM about onsite implementation of the SSHP
- Directing daily S&H activities on site
- Reporting all incidents, accidents, and near misses to the CAPE PM, CHSM, and USACE-authorized representative
▲ Maintaining S&H equipment on site
▲ Inspecting ongoing activities and reporting any S&H deficiencies to the CHSM
▲ Accompanying or maintaining communication with each work crew
▲ Performing site monitoring to ensure that site personnel are adequately protected
▲ Conducting initial site-specific safety training and regular safety briefings for all site personnel.

The SSHO will have the authority to:

▲ Stop site activities if an imminently dangerous situation exists; the emergency situation will be immediately reviewed with the PM and CHSM
▲ Direct personnel to change a work practice if it is determined to be hazardous to the S&H of site personnel
▲ Temporarily suspend an individual from field activities for an infraction of the SSHP, pending discussion with the CHSM

The SSHO will report to the CHSM about S&H-related issues.

5.6 Project Chemist

Mr. Wayne Vermeychuk is assigned to the project as CAPE’s Project Chemist. The Project Chemist will be responsible for all project chemistry-related items. Duties of the Project Chemist include, but are not limited to, the following:

▲ Coordination and communication with the analytical laboratory
▲ Performing review and validation of all project analytical data
▲ Preparing Analytical Data Report packages for submittal.

5.7 Site Superintendent

The Site Superintendent will act as CAPE’s onsite representative and will report directly to the PM. The Site Superintendent will coordinate and provide oversight of the assigned project work site to meet contract quality, safety, schedule, and cost goals. The Site Superintendent is responsible for the supervision and management of all site personnel and ensures that all site activities are performed in compliance with local, state, and federal regulations. Additional duties include: scheduling and directing subcontractors; managing work package budgets; interfacing with CAPE’s Quality Control and Safety and Health Programs to ensure that the project is being performed in a manner consistent with CAPE’s Corporate S&H Program, the Scope of Work (SOW), and all contract requirements; ensuring that all site work is performed in accordance with USACE-accepted plans; ensuring that all site personnel comply with all S&H requirements; communicating critical issues related to the project team; maintaining communication with the USACE-authorized
representative; providing cost and schedule information to Project Controls and the USACE; and determining personnel assignments on this project.

The Site Superintendent will direct daily implementation and enforcement of the TO requirements during site activities. Other responsibilities include:

- Ensuring that site activities are scheduled and executed with adequate personnel and equipment resources to perform the project safely
- Ensuring the availability of adequate communication between field personnel and emergency response personnel
- Ensuring that site personnel are trained in accordance with the SSHP
- The Site Superintendent will have the authority to stop site activities if an imminently dangerous situation exists. The emergency situation will be immediately reviewed with the PM and the CHSM.

5.8 Work Crew Personnel

The work crew will have the following responsibilities:

- Immediately reporting any unsafe or potentially hazardous conditions to the SSHO/Site Superintendent
- Immediately reporting all incidents, accidents, and near misses, no matter how minor they may seem, to the SSHO/Site Superintendent
- Maintaining knowledge of the information, instructions, and emergency response procedures contained in the SSHP and the Work Plan
- Complying with requirements and procedures set forth in the SSHP and other project documents and with any amendments.

5.9 CAPE Subcontractors

CAPE’s subcontracts will contain flow-down clauses that require subcontractors to meet all appropriate Army and USACE, federal, and state requirements. Onsite subcontractors will coordinate their activities through CAPE personnel. Subcontractors and their primary responsibilities are as follows:

- Surveying – To Be Determined (TBD). Will provide all necessary survey requirements under this task order.
- Analytical Laboratory – Shealy Environmental Services, Inc. (Shealy). Will perform chemical analysis of samples and provide analytical results to CAPE through the Project Chemist, Mr. Wayne Vermeychuk.
Field Sampling and QC – CDM Smith. Will perform delineation, waste characterization, confirmation, and backfill sampling and QC tasks.

Subsurface Sampling – TBD. Will provide direct-push technology for sampling.

Transportation and Disposal Contractor – TBD. Will provide trucking and transport of contaminated soil and water waste.

6.0 PRE-MOBILIZATION ACTIVITIES

6.1 Pre-Construction Activities

Pre-construction activities include the preparation of plans and permits. The following permits will be obtained as applicable prior to the start of excavation activities at each site:

- Dig permit
- Confined space permit
- Kansas Water Pollution Control Permit and authorization to discharge under the National Pollutant Discharge Elimination System (NPDES)
 - Kansas Permit Number: I-KS12-P008
 - Federal Permit Number: KS0028321
- Waste disposal profiles, Federal and State disposal facility permits, and waste transporter permits will be required.

CAPE will also acquire any other applicable permits as required by state and federal regulations prior to the start of work.

Prior to mobilization, CAPE will submit a request for personnel passes and a photograph authority letter at least 2 weeks in advance. Once all plans have been approved and all permits are in place, CAPE will mobilize equipment, materials, and personnel to the site.

6.2 Clean Fill Sampling

CAPE will collect samples from proposed backfill and topsoil sources prior to importing clean fill onto the site. Backfill will be compacted to 95 percent of the Standard Proctor (American Society for Testing and Materials [ASTM D-1557]) maximum dry density at roads and 85 percent of the Standard Proctor (ASTM D-1557) maximum dry density in green areas. Fill and topsoil samples will be analyzed for parameters and at the frequency specified in the QAPP. Backfill analytical results will be compared to the most recent Tier 2 Risk-Based Standards for Kansas (RSK) values for the Soil pathway in a Residential Scenario (KDHE-BER, 2015) and to the RSK value for nitrate in soil, outlined in Bureau of Environmental Remediation Policy # BER-RS-047 (KDHE-BER, 2014).
7.0 MOBILIZATION AND SITE PREPARATION ACTIVITIES

Upon approval of all planning documents and completion of pre-mobilization activities, CAPE will mobilize equipment and personnel to the SFAAP Site to begin site preparation work. Before field work begins, onsite personnel will fulfill all site S&H training requirements according to the APP.

Temporary facilities will be installed on site prior to the start of field activities. A 40-foot job site trailer will accommodate the Quality Control Manager (QCM), SSHO, and Site Superintendent. The trailer will be set up with a Genset for power, portable toilet(s), and a hand wash station. Per the project schedule, CAPE plans to start work in the northeast corner of the SFAAP facility at AOC 18, AOC 20, SWMU 1, and SWMU 50. Initially, the job site trailer will be located near SWMU 50, as shown in Figure 1. Following completion of work in the northeast corner of the facility, CAPE will coordinate with USACE as necessary and relocate the field trailer to a new location(s) in order to facilitate access to subsequent work areas.

Prior to beginning excavation, the excavation extents will be surveyed and staked, and CAPE will contact Kansas One-Call (dial 811) to locate and mark utilities located within the work areas. All overhead power lines are assumed to not be live; however, CAPE will verify this prior to beginning work.

CAPE will install silt logs or straw bales upgradient (up-slope) of active excavation areas and will maintain them to minimize the amount of surface water that enters an open excavation. Erosion controls are detailed in the Storm Water Pollution Prevention Plan (SWPPP) provided under separate cover.

8.0 EXCAVATION AND MATERIAL HANDLING PLAN

This section of the Work Plan provides a discussion of the excavation approach and sequencing, materials staging, and methods to prevent dust and debris from spreading during site activities.

8.1 Excavation

Contaminated soil will be removed from the excavation limits at each site using a hydraulic excavator. Excavation depths range from surface soil 0.5 feet (ft) below ground surface (bgs) to subsurface soil 7 ft bgs. Most sites will only have surface soil and shallow subsurface soil excavated to 0-2 ft bgs. Once contaminated soil excavation is complete in each area, CAPE will collect confirmation samples from each excavation area to confirm that the clean-up levels have been met. Details regarding confirmation sampling are included in the UFP-QAPP. If confirmation samples indicate contamination is still present in the soils at levels exceeding TMCLs, additional contaminated soil may be excavated and disposed, as directed by the Army. Open excavations will be roped off or otherwise marked to block access prior to backfilling.

After confirmation sampling verifies final excavation limits, a final topographic survey will be performed to document the limits of soil excavation at each site.
8.2 **Stockpiling**

At each site, excavated soil will be stockpiled on top of heavy duty 12-mil polyethylene tarps. For sites where in-situ waste characterization samples have not already been collected, waste characterization samples will be collected from stockpiles to determine an appropriate disposal facility. A wheel loader will be utilized to move and stockpile the excavated soil. Hazardous, nonhazardous, and special waste streams will be segregated into separate stockpiles until they are loaded out for disposal at an approved disposal facility. Waste will be labelled as “pending analysis” prior to characterization.

CAPE will begin excavation work after the excavation limits have been surveyed and staked, and after utilities have been cleared through Kansas One-Call and the property owner.

When feasible, CAPE will direct-load contaminated soil into trucks for transportation and disposal off-site. If needed, contaminated soil will be temporarily stockpiled on polyethylene tarps. When necessary, a water truck will be used during excavation, loading, and trucking activities to minimize dust migration offsite.

8.3 **Equipment Decontamination**

A temporary decontamination pad will be constructed at each site. All construction equipment will be thoroughly decontaminated with a pressure washer after completing excavation activities at each site to avoid cross-contamination. Decontamination fluids will be contained and managed on site. A waste characterization sample will be collected from the containerized fluids to determine the best approach for disposal. Dry decontamination procedures will be sufficient for other areas of equipment such as tracks, tires, and any equipment used for backfilling and compaction, since they will only come into contact with clean material. For further information regarding the decontamination of sampling equipment and the collection of rinsate samples, see Worksheet 17 of the UFP-QAPP.

8.4 **Site Restoration and Demobilization**

Upon verification that each excavation area has attained the required cleanup levels and approval has been received from the Contracting Officer (KO), CAPE will backfill the excavations to existing lines and grades. Backfill materials will consist of clean overburden soils and additional imported soil. Clean backfill and topsoil will be imported from Midwest Minerals if analytical results indicate the source is clean and after the Army approves the materials for use on site. CAPE will import backfill to the site and place it in the open excavations in maximum 12-inch lifts. Fill will be compacted using a tracked bulldozer and/or a sheepfoot roller. Backfill material will be placed to 6 inches below the final grade. The top 6 inches of backfill will consist of topsoil (placed in one lift) that has also been tested and approved for use on site. Backfilled areas will be graded to match surrounding areas and for positive drainage.

All disturbed areas will be reseeded with a seed mix approved by the local Kansas Wildlife and Parks office. Following seeding of the area, the ground will be covered with straw or similar material to protect the planting. Disturbed areas on slopes less than 3:1 will be tilled
to a minimum depth of 4 inches; disturbed areas on slopes between 3:1 and 1:1 will be scarificed to a minimum depth of 2 inches; and disturbed areas on slopes greater than 1:1 will not be tilled or scarificed. Seeding activities will not be conducted during heavy or prolonged precipitation events, during drought conditions, or when the ground is covered with snow. Newly seeded areas will be watered to establish the seeding to 95 percent coverage.

After excavation and restoration activities are complete, CAPE will demobilize all personnel and equipment from the site. Temporary facilities, stockpile liners and covers, general refuse, decontamination pads, and erosion controls will be removed and disposed of off-site prior to demobilization.

9.0 WASTE MANAGEMENT, TRANSPORTATION, AND DISPOSAL PLAN

Waste generated during excavation activities will be handled, staged, labeled, transported, and disposed of in full compliance with local, state, and federal regulations. All waste will be characterized prior to disposal. Anticipated waste streams are summarized in Table 2 below.

<table>
<thead>
<tr>
<th>Site</th>
<th>Anticipated Waste Streams</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOC 18</td>
<td>Contaminated soil</td>
<td>100 CY</td>
</tr>
<tr>
<td>AOC 20</td>
<td>Lead-impacted soil</td>
<td>100 CY</td>
</tr>
<tr>
<td>AOC 22</td>
<td>Contaminated soil (50% hazardous)</td>
<td>2,800 CY</td>
</tr>
<tr>
<td>SWMUs 22/32</td>
<td>Contaminated soil</td>
<td>3,500 CY</td>
</tr>
<tr>
<td>SWMU 53</td>
<td>Contaminated soil, sediment, and debris</td>
<td>400 CY</td>
</tr>
<tr>
<td>SWMU 54</td>
<td>Lead-impacted soil</td>
<td>10 CY</td>
</tr>
<tr>
<td>SWMU 64</td>
<td>ACM-impacted soil, Construction Debris (20% ACM)</td>
<td>2,200 CY</td>
</tr>
<tr>
<td></td>
<td>Contaminated ash and soil</td>
<td>3,400 CY</td>
</tr>
<tr>
<td>SWMU 1</td>
<td>ACM-impacted soil, Contaminated water, ACM and Sediment, Building Debris</td>
<td>20 CY, 25,000 gallons, 15 CY, N/A</td>
</tr>
<tr>
<td>SWMU 50</td>
<td>ACM-impacted soil, Concrete Construction Demolition Debris</td>
<td>17,000 CY, N/A</td>
</tr>
<tr>
<td>SWMU 69</td>
<td>ACM-impacted soil, Contaminated soil – North Disposal Area</td>
<td>TBD, 1,600 CY</td>
</tr>
<tr>
<td></td>
<td>Contaminated soil – South Disposal Area</td>
<td>700 CY</td>
</tr>
<tr>
<td></td>
<td>Railroad Ties</td>
<td>20 units</td>
</tr>
<tr>
<td>SWMU 15/16</td>
<td>Contaminated soil</td>
<td>600 CY</td>
</tr>
<tr>
<td>AOC 10</td>
<td>Contaminated soil</td>
<td>600 CY (incl. with SWMU 15/16)</td>
</tr>
<tr>
<td>SWMU 46</td>
<td>Asphalt</td>
<td>330 CY</td>
</tr>
<tr>
<td></td>
<td>Contaminated soil</td>
<td>800 CY</td>
</tr>
<tr>
<td>Site</td>
<td>Anticipated Waste Streams</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>AOC 18</td>
<td>Contaminated soil</td>
<td>100 CY</td>
</tr>
<tr>
<td>AOC 20</td>
<td>Lead-impacted soil</td>
<td>100 CY</td>
</tr>
<tr>
<td>AOC 22</td>
<td>Contaminated soil (50% hazardous)</td>
<td>2,800 CY</td>
</tr>
<tr>
<td>SWMUs 22/32</td>
<td>Contaminated soil</td>
<td>3,500 CY</td>
</tr>
<tr>
<td>SWMU 53</td>
<td>Contaminated soil, sediment, and debris</td>
<td>400 CY</td>
</tr>
<tr>
<td>SWMU 54</td>
<td>Lead-impacted soil</td>
<td>10 CY</td>
</tr>
<tr>
<td>SWMU 64</td>
<td>ACM- & Construction Debris (20% ACM)</td>
<td>2,200 CY</td>
</tr>
<tr>
<td></td>
<td>Contaminated ash and soil</td>
<td>3,400 CY</td>
</tr>
<tr>
<td>AOC 5</td>
<td>Contaminated soil (25% hazardous)</td>
<td>1,800 CY</td>
</tr>
<tr>
<td>SWMU 40</td>
<td>Contaminated soil and sediment</td>
<td>14,200 CY</td>
</tr>
<tr>
<td></td>
<td>Contaminated water</td>
<td>40,000 gallons</td>
</tr>
<tr>
<td>SWMU 30</td>
<td>Contaminated soil</td>
<td>15 CY</td>
</tr>
<tr>
<td>SWMU 63</td>
<td>Contaminated soil</td>
<td>60 CY</td>
</tr>
<tr>
<td>SWMU 67</td>
<td>Contaminated soil</td>
<td>9,000 CY</td>
</tr>
<tr>
<td>AOC 15</td>
<td>Contaminated soil and bulk sand (100%</td>
<td>330 CY</td>
</tr>
<tr>
<td></td>
<td>assumed hazardous)</td>
<td></td>
</tr>
</tbody>
</table>

9.1 Waste Characterization Sampling

Waste characterization samples will be collected from excavated soil stockpiles or, depending on field conditions, in-situ samples may be collected during PDI field activities. For sites where PDI sampling activities will be conducted, CAPE will collect in-situ soil and surface water samples from each Site for waste characterization. Subsurface soil samples will be collected using a direct-push rig in known areas of contamination as determined by previous investigations. In-situ surface water samples will be collected using a dip cup or grab sampling device. CAPE will collect composite waste characterization samples and have them analyzed for the parameters listed in the QAPP. Validated analytical results will be submitted to the Army and the disposal facility for review and comparison to their permit requirements. Details regarding sample analyses and locations are provided in Worksheet #18 in the QAPP.

9.2 Waste Segregation, Stockpiling, and Containerization

Waste will be segregated according to waste stream (non-hazardous excavated soil, hazardous excavated soil, ACM, wastewater, and construction and demolition [C&D] debris).

Excavated soils will be stockpiled on a 12-mil polyethylene liner in a site-specific laydown area. Suspected hazardous waste and ACM-impacted soil will be segregated into separate stockpiles from nonhazardous waste. Soil will be loaded into trucks and transported to an offsite landfill. If waste characterization samples indicate that the soil is hazardous waste, it will be disposed of at a RCRA Subtitle C landfill. If results indicate that the soil is nonhazardous waste, it will be disposed of at a RCRA Subtitle D landfill. A Special Waste
Authorization will be obtained for the disposal facility receiving the Subtitle D waste. If soil contains asbestos, it will be disposed of at a special waste facility.

Wastewater will be stored in frac tanks on site and characterized prior to disposal at an offsite facility. After containerization, all wastewater will be marked as “Pending Analytical” until waste characterization results are received.

C&D debris will include asphalt and any miscellaneous building materials generated from demolition activities. These wastes will be stored in closed-top-type dumpsters/containers and will be emptied on a regularly scheduled basis. Materials from the C&D debris waste stream will be considered C&D debris and will not be tested before disposal. C&D material in contact with contaminated soil will be brushed clean prior to disposal. C&D material that cannot be brushed clean will be disposed of with the contaminated soil.

All field staff will wear proper PPE while handling waste, including a respirator, disposable suit, safety-toed boots, gloves, a hard hat, safety glasses, and hearing protection, as necessary. Additional information about PPE is included in the APP. Proper signage will be used to identify work areas as necessary.

Excavation stockpiling activities will utilize methods that minimize excess disturbance or damage to ACM and the material will be adequately wetted in order to reduce airborne emissions. Methods and engineering controls for managing ACM are included in the Asbestos Abatement Plan in the APP.

9.3 Transportation and Disposal

The primary waste management objectives are the safe handling, transportation, and disposal of the hazardous and non-hazardous contaminated soil waste stream generated during excavation activities and the contaminated water collected during dewatering activities. These objectives will be achieved through compliance with federal, state, and local regulations.

After obtaining all necessary approvals to transport and dispose of the waste, CAPE will begin excavation activities. Estimated waste quantities are included in Table 2 above. Contaminated water will be containerized in a frac tank on site and characterized before being transported to a disposal facility. The excavated contaminated soil will be stockpiled on site before being loaded onto trucks for transportation and disposal (T&D) at the landfill.

Onsite stockpile areas are outlined in the site-specific work plans. Management of the stockpile areas include the maintenance and inspection of all stormwater management controls, which are outlined in the SWPPP. Soil stockpiles will be separated by waste stream, so that confirmation samples used to identify the soils for removal can also be used to characterize the soils for offsite disposal. Soils requiring offsite disposal will be transported to an approved offsite landfill. SFAAP is a large-quantity generator of hazardous waste. Any hazardous waste produced will be documented appropriately for the large-quantity generator status. The Army will be the signor of hazardous waste manifests.
Before trucks leave the Site, CAPE will decontaminate the exterior of the trucks and ensure that containers holding the waste are adequately enclosed to prevent loss during transportation. Storage, transportation, and disposal of all containerized wastes will be conducted in accordance with applicable federal, state, and local regulations. A state-licensed waste transporter will be used, and transportation will be provided in accordance with the Department of Transportation (DOT) Hazardous Material Regulations in 49 Code of Federal Regulations (CFR) 171, 49 CFR 172, 49 CFR 173, 49 CFR 174, 49 CFR 177, 49 CFR 179, and 40 CFR 263. At this time, disposal facilities and T&D subcontractors have not yet been determined.

CAPE will maintain records of all waste determinations, including appropriate results of analyses performed, substances and sample location, the time of collection, and other pertinent data as required by 40 CFR 280 Section 74, and 40 CFR 262, Subpart D. Transportation, treatment, disposal methods and dates, the quantities of waste, the names and addresses of transporter(s) and the disposal or reclamation facility, shall also be recorded and available for the inspection, as well as copies of the following documents:

- All manifests
- All waste analyses or waste profile sheets
- All certifications of final treatment/disposal signed by the responsible disposal facility official.

Following contract closeout, the original records will become the property of the Government.

9.4 Manifests

CAPE will coordinate with the waste facilities to prepare pre-printed waste manifests for the transportation of contaminated soils in accordance with EPA, DOT, and KDHE requirements. As the waste generator, all profiles and manifests will be reviewed and signed by the Army point of contact (POC). All waste profiles and analytical data will be submitted to the Army for review at least 5 working days prior to transport.

For hazardous and special waste manifests, CAPE will utilize a state-approved manifest system in conformance with the requirements identified in 40 CFR 263 or the EPA-approved manifest system, as applicable, so that the wastes can be tracked from generation to ultimate disposal. The manifests will comply with all of the provisions of the transportation and disposal regulations. CAPE will be responsible for preparing manifests for each load and for obtaining the appropriate identification numbers and signatures. If required by a specific TO, CAPE will sign the manifest on behalf of the generator. The transporter will be a Kansas-registered hazardous waste hauler and will be registered in accordance with 49 CFR Part 171, Subpart G.

Manifests will also be signed by the transporter upon loading and before leaving the site. At a minimum, each manifest will include the following information:
Transporter information, including name, address, and contact information
Generator information, including name, address, and contact information
Site name and address
Description of waste
Type of container
Quantity of waste
Emergency contact information.

9.5 **Waste Documentation and Recordkeeping**

CAPE will maintain the following information for each load of contaminated material that is shipped off-site:

- A complete and accurate manifest
- Documentation that a proper DOT-approved shipping container is used
- Validation that all waste shipment containers are in good condition and not leaking
- A statement that the driver has a current, valid commercial driver’s license
- A statement that the driver’s logbook is current
- A statement that the transporter is certified to haul the waste type
- Validation that a certificate of insurance is current
- Disposal facility acceptance documentation.

Waste will be tracked from cradle to grave throughout project activities. A digital waste tracking log will be maintained and will include the generation dates and estimated waste volumes, truck arrival and departure times, truck licenses/EPA numbers, manifest numbers, and final volume/tonnage for each waste stream and site.

CAPE will also maintain records of all copies of each signed manifest, placarding for storage and transport of hazardous waste, copies of signed disposal receipts, and waste determinations, including appropriate results of analyses performed, substances and sample location, the time of collection, and any other pertinent data. CAPE will keep copies of all waste profiles. Copies of these records will be provided in the final CMI Reports.

10.0 **DEWATERING PLAN**

The purpose of the dewatering is to remove stormwater and surface water that accumulate in open excavations and to remove all accumulated water, including groundwater, so that backfilling
occurs under dry conditions. The dewatering activity will continue as needed for the duration of these activities until the excavations are backfilled to their initial elevation.

Prior to beginning excavation work, CAPE will install silt logs or other erosion and sedimentation controls to divert water around the excavations and to minimize the amount of surface water runoff that enters an open excavation.

CAPE plans to dewater the excavation areas using common construction dewatering methods. This will be accomplished using a system of frac tanks, pumps, hoses, piping, valves, and other appurtenances.

10.1 Excavation Dewatering

In the event that water accumulates to the extent that removal is required from any type of structure, excavation, trench, or other construction-related impoundment, dewatering procedures will be followed as outlined below. Dewatering operations are to be conducted in compliance with the SWPPP, which is provided under separate cover. This dewatering approach was previously reviewed and approved by the KDHE Board of Water as part of the Removal Action Work Plan, MEC Foundations & Inside Sewer Lines Removal Action, Former Sunflower Army Ammunition Plant (Zapata, 2016).

Dewatering operation requirements will vary depending on if the excavation area is clean or whether the excavation has soil contamination above TMCLs.

If the excavation area has contaminant concentrations in soil below TMCLs, the following dewatering process will be followed:

▲ Soil sampling results will be reviewed to verify that the samples were collected in accordance with the approved work plan and COCs are below the soil TMCLs.
▲ Water samples will not be collected unless water accumulation in the open excavation is one foot or greater in depth.
▲ Samples will be analyzed only for COCs associated with that SWMU/AOC.
▲ One water sample will be collected per excavation. However, a second water sample will be collected if additional stormwater accumulates in the excavation (following initial removal and prior to backfilling).
▲ A maximum of two samples will be collected for any given excavation.
▲ For water depths greater than one foot, but less than four feet:
 o A pump inlet basket will be placed in the excavation area. A pump inlet basket is a drum with holes and 6 to 12 inches of gravel in the bottom.
 o The pump intake will be placed in the pump inlet basket.
▲ For water depths greater than four feet:
 o The pump inlet will be set at approximately half the depth of the water.
 o When the depth of the water is below four feet, a pump inlet basket will be placed in the excavation area and the pump intake will be moved to the pump inlet basket.
▲ If analytical results confirm stormwater present in the excavation is below TMCLs, the water will be pumped to a ditch or stormwater sewer that has
stormwater runoff BMPs installed. Alternatively, the water may be collected from the excavation area and used for dust control on non-paved access roads.

- If analytical results indicate that the accumulated stormwater exceeds TMCLs, the water will be disposed as indicated in the following paragraph.
- The maximum discharge rate will be approximately 100 gallons per minute.
- If water is pumped to a ditch, a pump discharge structure will be installed 25 to 50 feet upgradient of the existing BMP and the pump outlet will be placed in the discharge structure. If pump flow exceeds the capacity of the pump discharge structure, the pumping rate will be reduced.
- If water is pumped to a stormwater sewer, a pump discharge structure is not necessary.
- Once all of the water that can reasonably be pumped from the excavation has been removed, the excavation will be backfilled.
- Any water remaining in the excavation will not be allowed to overflow from the excavation during backfilling.
- If water begins to overflow the excavation during backfilling, backfilling will be halted for a minimum of 24 hours while the water is absorbed.

If the entire excavation area does not have compliant contaminant concentrations in soil, the following dewatering process will be followed:

- The accumulated stormwater will be sampled from the excavation area for COCs specific to the SWMU/AOC.
- If the analytical results indicate the accumulated stormwater is below TMCLs, the water will be pumped to a ditch or stormwater sewer that has stormwater runoff BMPs installed. Alternatively, the water may be collected from the excavation area and used for dust control on non-paved access roads. If the analytical results indicate the accumulated stormwater cannot be discharged without treatment:
 - The water will be collected from the excavation area and used for dust control on the contaminated soil stockpiles within the SWMU/AOC boundary; or
 - The water will be collected from the excavation area and transported off-site for disposal at a permitted facility.
- Approval for the disposal of accumulated stormwater will be obtained from KDHE.
- After dewatering is completed, the pump discharge structure will be removed. Sediment accumulated in the pump discharge structure will be removed and placed on a contaminated soil stockpile within the SWMU or AOC administrative boundary.

10.2 Surface Water Removal

At SWMU 1, approximately 25,000 gallons of water is located in the scale house basement and attached scale. A sump pump will be used to pump water from the scale house basement into frac tanks. The containerized wastewater will be characterized prior to disposal at an approved disposal facility. Remaining sediment in the basement will be
tested for ACM, removed, and disposed of at a special waste facility as necessary. An estimated 15 CY of sediment is expected to be disposed.

Approximately 40,000 gallons of retained surface water is located in the evaporative pond at SWMU 40. The surface water will be pumped out of the pond into frac tanks and characterized prior to disposal.

10.3 **Spill and Leak Response**

The Site Superintendent or Quality Control Officer/SSHO will inspect the dewatering system from inlet to the frac tanks for signs of leaks at the start and end of each work day that sump pumps are operated. In the event that a leak is identified, the dewatering system will be temporarily stopped. Measures will be taken to contain and collect the leaked water. Repair measures will be made as required. Upon the Site Superintendent approving the repair to the system, dewatering activities will recommence. The leak will be documented in the daily report with information including, but not limited to, location, time, cause, repair measures taken, estimated volume of water leaked, containment and collection measures taken, and duration of down dewatering time.

10.4 **Disposal Approach**

CAPE will containerize and dispose of waste water in fractional holding tanks. Waste characterization samples will be collected and analyzed per Worksheets #21 and #18 in the QAPP. CAPE plans to discharge the containerized construction water at an approved offsite disposal facility.

10.5 **Dewatering Operation Equipment and Materials**

The following lists various pieces of equipment and materials that CAPE may employ to most effectively meet dewatering operations. The selection and implementation of the dewatering equipment and materials is at the discretion of CAPE’s project management team for meeting the assumed conditions under the SOW.

This list may include, but is not limited to, the following:

- Dewatering Pumps
 - Electric Sump Pump
 - Gas-Powered Trash Pump
 - Metal drum with gravel
- Water Level Meter
- Inline Flowmeter with Totalizer (2-inch minimum)
- 2-inch to 3-inch Camlock Hoses
 - 20-foot Suction Hoses
 - 25- to 50-foot Discharge Hoses
 - Spare Gaskets and Cotter Pins
- Line Protection
 - Hose Ramps
Demarcation

- Portable Generator (as needed)
- Power Distribution – 240-volt Spider Box
- Frac Tank (as needed, based on assumed conditions)
 - 21,000-Gallon Closed-Top Tank
 - 18,000-Gallon Open-Top Weir Tank
 - 8,400-Gallon Roll-off Tank
- Suspended Solids Filtering (as needed)
 - Filter Socks (100 – 200-Micron)
 - Bag Filters (5-, 10-, 25-, 50-, 100-Micron)
- Geotextile fabrics
 - Unwoven (3-, 5-, 6-, or 8-ounce/square yard)
 - Woven (20, 40, 70 US Sieve)
- Washed Rock (¾-inch, ½-inch, or ¼-inch)

11.0 PROJECT SCHEDULE AND SEQUENCE

Following the completion and approval of project plans and submittals, CAPE intends to mobilize to the site for investigation field activities in July 2019. An updated project schedule is included as a separate submittal.

12.0 DOCUMENTATION AND REPORTING

12.1 Quality Control Summary Report

Following completion of PDI sampling at each site, and prior to drafting site-specific Work Plans for each site, CAPE will prepare and submit a Quality Control Summary Report (QCSR) to USACE for review. The QCSR will serve as a preliminary summary of findings and will include sample location maps and validated analytical laboratory results.

12.2 Site-Specific Work Plans

Site-specific work plans will be submitted as stand-alone documents. These plans will include more detailed information the planned corrective action measures at each site, including excavation limits, confirmation sampling locations, sample analyses, identification of site-specific features, site-specific details about contamination, and data quality objectives.

12.3 Corrective Measures Completion Reports

Following completion of the selected corrective measures alternative for each site, CAPE will prepare CMI Reports for each site. The CMI reports will include the following:

- All survey data
- As-Built drawings
- Outline of all work performed in the area
▲ Field log books
▲ Compaction testing results
▲ Disposal records
▲ Analytical data from all samples, and
▲ Full analytical data packages as an attachment to the report, as well as all DQCRs, etc.

13.0 REFERENCES

FIGURE 1

SITE MAP
APPENDIX A

COMMUNICATION PLAN
COMMUNICATION PLAN

FOR

SUNFLOWER ARMY AMMUNITION PLANT ENVIRONMENTAL REMEDIATION
De SOTO, KANSAS

Contract No.: W912DQ-16-D-3000
Delivery Order No.: W912DQ18F3021

Prepared for:

U.S. Army Corps of Engineers
Kansas City District
601 East 12th Street
Kansas City, MO 64106

Prepared by:

CAPE Environmental Management Inc
500 Pinnacle Court, Suite 100
Norcross, GA 30071

April 2019
TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS ... iii

1.0 SIGNATURE SHEET ... 1-1

2.0 INTRODUCTION ... 2-1
 2.1 Purpose.. 2-1
 2.2 Site Location and Background... 2-1
 2.3 Project Description... 2-2
 2.4 Scope of Work.. 2-2
 2.5 Scope of Communication Plan... 2-3

3.0 ROLES AND RESPONSIBILITIES ... 3-1
 3.1 USACE .. 3-1
 3.1.1 USACE Project Manager .. 3-1
 3.1.2 USACE Contracting Personnel .. 3-1
 3.2 CAPE Team.. 3-1
 3.2.1 CAPE Program Manager .. 3-1
 3.2.2 CAPE Project Manager .. 3-2
 3.3 KDHE .. 3-2
 3.4 BRAC ... 3-2

4.0 COMMUNICATION PROCESS .. 4-1
 4.1 Informal Communication... 4-1
 4.2 Meetings.. 4-1
 4.3 Status Reports ... 4-2

5.0 COMMUNICATIONS MANAGEMENT ... 5-1
 5.1 Communication Management.. 5-1
 5.2 Communication Distribution .. 5-1
 5.3 Communication and Document Storage ... 5-1

6.0 PROCEDURES FOR SUBMITTAL AND REVIEW OF DELIVERABLES .. 6-1
 6.1 QCP, PMP, and Communication Plan... 6-1
 6.2 APP/SSHP ... 6-1
 6.3 Site-Wide Work Plan .. 6-1
 6.4 SWMU/AOC-Specific Reports and Plans ... 6-1

7.0 CONFLICT OF INTEREST MANAGEMENT PLAN ... 7-1
 7.1 Scope.. 7-1
 7.2 Purpose.. 7-1
 7.3 COI Procedures... 7-1
TABLES

3-1 Contact Information

FIGURES

1 Organizational Chart
2 Work Flow
LIST OF ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAP</td>
<td>Army Ammunition Plant</td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing material</td>
</tr>
<tr>
<td>AHA</td>
<td>Activity Hazard Analysis</td>
</tr>
<tr>
<td>AOC</td>
<td>Area of Concern</td>
</tr>
<tr>
<td>APP</td>
<td>Accident Prevention Plan</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BER</td>
<td>Bureau of Environmental Remediation</td>
</tr>
<tr>
<td>BRAC</td>
<td>Base Realignment and Closure</td>
</tr>
<tr>
<td>CAPE</td>
<td>Cape Environmental Management Inc</td>
</tr>
<tr>
<td>CHMM</td>
<td>Certified Hazardous Materials Manager</td>
</tr>
<tr>
<td>CHSM</td>
<td>Corporate Health and Safety Officer</td>
</tr>
<tr>
<td>CMI</td>
<td>Corrective Measures Implementation</td>
</tr>
<tr>
<td>CMS</td>
<td>Corrective Measures Study</td>
</tr>
<tr>
<td>COC</td>
<td>Contaminant of Concern</td>
</tr>
<tr>
<td>COI</td>
<td>Conflict of Interest</td>
</tr>
<tr>
<td>COR</td>
<td>Contracting Officer Representative</td>
</tr>
<tr>
<td>CQC</td>
<td>Contractor Quality Control</td>
</tr>
<tr>
<td>CQCM</td>
<td>Corporate Quality Control Manager</td>
</tr>
<tr>
<td>CQCP</td>
<td>Contractor Quality Control Plan</td>
</tr>
<tr>
<td>CQCSM</td>
<td>Contractor Quality Control Systems Manager</td>
</tr>
<tr>
<td>CQMC</td>
<td>Construction Quality Management for Contractors</td>
</tr>
<tr>
<td>DD</td>
<td>Decision Document</td>
</tr>
<tr>
<td>DFW</td>
<td>definable feature of work</td>
</tr>
<tr>
<td>DQCR</td>
<td>Daily Quality Control Reports</td>
</tr>
<tr>
<td>EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>EPP</td>
<td>Environmental Protection Plan</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>KDHE</td>
<td>Kansas Department of Health and the Environment</td>
</tr>
<tr>
<td>KO</td>
<td>Contracting Officer</td>
</tr>
<tr>
<td>N/A</td>
<td>not applicable</td>
</tr>
<tr>
<td>NC</td>
<td>nitrocellulose</td>
</tr>
<tr>
<td>NG</td>
<td>nitroglycerine</td>
</tr>
<tr>
<td>NQ</td>
<td>nitroguanidine</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PDI</td>
<td>pre-design investigation</td>
</tr>
<tr>
<td>PM</td>
<td>Project Manager</td>
</tr>
<tr>
<td>PMP</td>
<td>Project Management Professional</td>
</tr>
<tr>
<td>Acronym</td>
<td>Term</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>POC</td>
<td>point of contact</td>
</tr>
<tr>
<td>PPE</td>
<td>personal protective equipment</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>QCS</td>
<td>Quality Control System</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RCRA-RI</td>
<td>RCRA Facility Investigation</td>
</tr>
<tr>
<td>RMS</td>
<td>Resident Management System</td>
</tr>
<tr>
<td>RSK</td>
<td>Risk-Based Standards for Kansas</td>
</tr>
<tr>
<td>S&H</td>
<td>Safety and Health</td>
</tr>
<tr>
<td>SFAAP</td>
<td>Sunflower Army Ammunition Plant</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>SOW</td>
<td>Scope of Work</td>
</tr>
<tr>
<td>SRL</td>
<td>Sunflower Redevelopment Authority</td>
</tr>
<tr>
<td>SSHO</td>
<td>Site Safety and Health Officer</td>
</tr>
<tr>
<td>SSHP</td>
<td>Site Safety and Health Plan</td>
</tr>
<tr>
<td>SVOC</td>
<td>semivolatile organic compound</td>
</tr>
<tr>
<td>SWMU</td>
<td>Solid Waste Management Unit</td>
</tr>
<tr>
<td>TAL</td>
<td>Target Analyte List</td>
</tr>
<tr>
<td>TBD</td>
<td>to be determined</td>
</tr>
<tr>
<td>TMCL</td>
<td>Target Media Cleanup Level</td>
</tr>
<tr>
<td>TO</td>
<td>task order</td>
</tr>
<tr>
<td>TPH</td>
<td>total petroleum hydrocarbons</td>
</tr>
<tr>
<td>UFP-QAPP</td>
<td>Uniform Federal Policy</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>USACE</td>
<td>United States Army Corps of Engineers</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>WP</td>
<td>Work Plan</td>
</tr>
</tbody>
</table>
1.0 SIGNATURE SHEET

This section provides a detailed listing of the individuals responsible for Draft Finaling, reviewing, implementing, and approving this Communications Plan. Signature indicates approval of the document.

Plan Approval

Plan Approval: Krishna Nalavala, Project Delivery Manager

Date: 01/16/2019
2.0 INTRODUCTION

This Communication Plan was developed to codify communication protocols within the Project Team and between the Project Team and stakeholders for the Corrective Action at the former Sunflower Army Ammunition Plant (AAP) Task Order. CAPE project work will be conducted for the USACE Kansas City District under Contract Number W912DQ-16-D-3000, Task Order W912DQ18F3021, dated 24 October 2018.

2.1 Purpose

The purpose of this Communication Plan is to describe how communications within the Project Team and between the Project Team and stakeholders will be managed throughout the life cycle of this Task Order. For this Task Order, the Project Team will consist of Cape Environmental Management (CAPE), with support from CDM Smith and Shealy Labs. The Communication Plan describes the roles and responsibilities of key personnel, describes the communication process including meetings and status reports, sets forth communications management procedures, presents a Conflict of Interest (COI) Management Plan, and describes the planned and periodic communications occurring between the project team and the SFAAP stakeholders. Stakeholders for the project include USACE Kansas City District, the Base Realignment and Closure (BRAC) team, the Kansas Department of Health and Environment (KDHE), and the CAPE Team (CAPE, CDM Smith, and Shealy). This plan covers scheduled written and oral communications, responses to unsolicited requests for information, the frequency of scheduled communications, and the person(s) responsible for providing the information. The Communication Plan is an integral part of the overall Project Management Plan (PMP).

2.2 Site Location and Background

Sunflower Army Ammunition Plant (SFAAP) encompasses approximately 9,065 acres near DeSoto, Kansas, in the northwest corner of Johnson County. The area surrounding the plant is primarily privately owned agricultural land that is sparsely populated. The plant is bound on the east by Spoon and Kill Creeks and on the west by Captain Creek.

SFAAP was built in 1942 and began manufacturing base explosives compounds for use as propellants: nitroglycerine (NG), nitrocellulose (NC), and nitroguanidine (NQ). Production of rocket propellant ended in 1971; only nitric acid, sulfuric acid, oleum, and NQ were manufactured between 1971 and 1992. SFAAP was transferred to the Sunflower Redevelopment Authority (SRL) in August 2005, and many areas of the property are currently leased for non-military uses.
2.3 **Project Description**

SFAAP includes 70 Resource Conservation and Recovery Act (RCRA) solid waste management units (SWMUs) and 20 Areas of Concern (AOCs). This project entails environmental remediation of twelve (12) SWMUs and five (5) AOCs that will be conducted with regulatory coordination through the Kansas Department of Health and the Environment (KDHE), Bureau of Environmental Remediation (BER), and the United States Environmental Protection Agency (EPA) Region VII.

The SWMUs and AOCs located at SFAAP include surface impoundments, ditches, sumps, munitions proving ranges, burning grounds, and landfills. As a result of historical practices, soil concentrations at these locations exceed residential Target Media Cleanup Levels (TMCLs) for various contaminants of concern (COCs), which include: metals, total petroleum hydrocarbons (TPH), dioxins/furans, semivolatile organic compounds (SVOCs), explosives, nitrate/nitrite, ammonia, and non-friable asbestos-containing material (ACM).

Site corrective measures and COCs have been determined for each SWMU and AOC based on past RCRA Facility Investigations (RCRA-RI), Focused Corrective Measures Studies (CMSs), and Decision Documents (DDs). The selected corrective action alternatives include:

- Excavation and disposal of soil at five (5) sites where the extent of contamination has been previously delineated
- Completion of Pre-Design Investigation (PDI) data gap soil sampling and subsequent excavation and disposal of soil at ten (10) sites where the extent of contamination has not been adequately delineated.

2.4 **Scope of Work**

The objective for each site is to complete the corrective actions specified in the contract Corrective Measures Implementation Requirement.

For sites where no PDI is required, corrective action measures include:

- Excavation of soil exhibiting COCs above TMCLs
- RCRA waste characterization sampling and off-site disposal
- Post-excision confirmation sampling
- Characterization of backfill
- Backfill and site restoration
2.5 **Scope of Communication Plan**

The Communication Plan identifies the procedures that will be used to manage communication required for the Development of RCRA Documents at the SFAAP. The plan focuses on formal communication elements and workflows but also addresses informal communication. This plan is not intended to limit, but to enhance communication practices. Open, ongoing communication between Project Team members and with stakeholders is critical to the success of the project.
3.0 **ROLES AND RESPONSIBILITIES**

This section includes a brief description of the roles and responsibilities of each of the Project Team members and stakeholders. In addition, it lists the point of contact (POC) for each individual or group and their communication responsibility. Contact information is provided in Table 3-1. The list of key project personnel, along with their resumes and certifications are included in the CQC plan. A project organization chart is included as Figure 1.

3.1 USACE

The USACE Project Delivery Team will consist of a Project Manager (PM), Contracting Personnel, and a team of technical experts. The USACE will be responsible for administering the contract and providing a technical review of the work performed. Direction to CAPE regarding the Task Order’s Performance Work Statement and technical execution must originate from USACE or be confirmed by USACE prior to any action by CAPE.

3.1.1 USACE Project Manager

Ms Kathy Baker is the PM responsible for execution of this Task Order. He will be kept apprised of all information related to the execution of this Task Order and is directly responsible for the delivery of complete, timely, and responsive products and services to the customer (USACE).

Ms. Baker will oversee USACE’s team of technical experts. Ms. Baker will be the primary POC for USACE. All project communication to USACE will either be directed to Ms. Baker or copied to him (along with any direct communication with customer or stakeholder representatives to the extent approved by Ms. Baker, which will also be copied to him or summarized via e-mail back-brief).

3.1.2 USACE Contracting Personnel

Ms. Kimberley Blood will serve as the USACE Contracting Officer (KO); and Mr. Robert Loughran will serve as the USACE Contracting Officer’s Representative (COR) for this Task Order. As such, they will be responsible for ensuring that all contract commitments are met for this Task Order.

3.2 CAPE Team

3.2.1 CAPE Program Manager

Mr. Mike Healy, is the CAPE Program Manager (PGM). As such, Mr. Healy will be responsible for ensuring that the resources necessary for the success of the project are available to the CAPE Team and that contract obligations are met.
3.2.2 CAPE Project Manager

The PM, Krishna Nalavala, CHMM, PMP, will have the overall responsibility for all technical, contractual, safety, and administrative matters for CAPE under this contract. He will ensure that a high degree of client responsiveness is maintained. Additionally, he will be responsible for reviewing and approving plans, overseeing staff selection, monitoring contract and task funds and schedules, and implementing quality assurance (QA)/QC processes. He is also responsible for the overall conformance of the work to USACE requirements and project work plans. This responsibility includes the preparation and timely submission of all required work plans. The PM will also see that the project schedule and budget allow sufficient resources to properly construct and document the required elements of the work in accordance with the approved work plans.

The PM will be the primary contact between USACE and CAPE. He will be in regular contact with the COR regarding project status, potential schedule and cost impacts, and QC issues.

3.3 KDHE

KDHE will provide regulatory review of project documents, and USACE will seek concurrence from KDHE regarding the content of the RCRA documents for each SWMU. Communications with KDHE by the Project Team will be routed through the USACE PM or BRAC POC.

3.4 BRAC

BRAC will provide regulatory review of project documents, and approve regulatory coordination. THE USACE COR or BRAC designee will also attend and represent the Army in all meetings with the regulators.
Table 3-1 identifies the key members of the project team for this TO and their contact information. This table will be updated as needed throughout the duration of this TO.

Table 3-1. SFAAP CMI at 20 Sites Project Contact List

<table>
<thead>
<tr>
<th>Name/Affiliation/Title</th>
<th>Phone/Fax/E-Mail</th>
<th>Mailing Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>USACE Kansas City District</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kori Hames, Contracting Officer</td>
<td>Phone: (816) 389-2037</td>
<td>601 E 12th Street</td>
</tr>
<tr>
<td></td>
<td>Kori.a.hames@usace.army.mil</td>
<td>Kansas City, MO 64106-2896</td>
</tr>
<tr>
<td>Kimberley Blood, Contracting Officer</td>
<td>Phone: (816) 389-2315</td>
<td>601 E 12th Street</td>
</tr>
<tr>
<td></td>
<td>Kimberley.m.blood@usace.army.mil</td>
<td>Kansas City, MO 64106-2896</td>
</tr>
<tr>
<td>Robert Loughran, COR</td>
<td>Phone: (816) 389-3663</td>
<td>601 E 12th Street</td>
</tr>
<tr>
<td></td>
<td>Robert.j.loughran@usace.army.mil</td>
<td>Kansas City, MO 64106-2896</td>
</tr>
<tr>
<td>Kathy Baker, PM</td>
<td>Phone: (816) 389-3906</td>
<td>601 E 12th Street</td>
</tr>
<tr>
<td></td>
<td>Kathy.T.Baker@usace.army.mil</td>
<td>Kansas City, MO 64106-2896</td>
</tr>
<tr>
<td>CAPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krishna Nalavala, Project Delivery Manager</td>
<td>Phone: (770) 908-7200</td>
<td>500 Pinnacle Court, Suite 100</td>
</tr>
<tr>
<td></td>
<td>mobile: (678) 428-4043</td>
<td>Norcross, GA 30071</td>
</tr>
<tr>
<td></td>
<td>knalavala@cape-inc.com</td>
<td></td>
</tr>
<tr>
<td>CDM Smith</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laura Kelley, CQCC</td>
<td>Phone: (816) 412-3146</td>
<td>9200 Ward Pkwy, Suite 320</td>
</tr>
<tr>
<td></td>
<td>KelleyLL@cdmsmith.com</td>
<td>Kansas City, MO 64114</td>
</tr>
<tr>
<td>BRAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tony Spaar, SFAAP Commander’s Representative</td>
<td>Phone: (913) 948-9615</td>
<td>Sunflower Army Ammunition Plant, P.O. Box 640</td>
</tr>
<tr>
<td></td>
<td>tony.e.spaar.civ@mail.mil</td>
<td>De Soto, KS 66018-0640</td>
</tr>
<tr>
<td>Regulators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Margaret Townsend, KDHE</td>
<td>Phone: (785) 296-1936</td>
<td>100 SW Jackson St., Suite 410</td>
</tr>
<tr>
<td></td>
<td>margaret.townsend@ks.gov</td>
<td>Topeka, KS 66612</td>
</tr>
<tr>
<td>Ruby Crysler, EPA</td>
<td>Phone: (913) 551-7409</td>
<td>11201 Renner Blvd</td>
</tr>
<tr>
<td></td>
<td>crysler.ruby@epa.gov</td>
<td>Lenexa, KS 66219</td>
</tr>
</tbody>
</table>
4.0 COMMUNICATION PROCESS

4.1 Informal Communication

Informal communication includes phone conversations, emails, and in-person conversations between the CAPE Team and the SFAAP stakeholders. As a rule, informal communication with stakeholders, to the extent authorized by the USACE PM, expected to consist of technical questions or questions of clarification on document review comments (as an example), must be documented to the USACE PM and other applicable stakeholder parties; at a minimum, it should include a summary of issues discussed and any technical direction or project decisions provided. Technical and scope of work direction on the Task Order must be issued/confirmed by USACE and cannot be implemented by the CAPE Team solely on the basis of discussions with USACE’s customers and/or other SFAAP stakeholders. All communication will either be sent through or copied to the USACE PM. As appropriate, informal communications such as emails, phone calls, and conversations about the project will be documented and included with the Monthly Status Report prepared by CAPE PM for submittal to USACE each month.

4.2 Meetings

Meetings will be held at regular intervals to facilitate communication between the SFAAP stakeholders. These meetings will include monthly Milestone Meetings and bimonthly stakeholder Meetings. Monthly and bimonthly meetings will, at a minimum, be scheduled during the preceding meeting. Meetings will be used to communicate progress on the Task Order to the stakeholders and to discuss and resolve issues that may occur during the project.

Additional meetings to discuss specific issues will be scheduled as needed. If a stakeholder desires an additional meeting, they will send a written request to the USACE PM. The request will summarize the need for the meeting and list required participants along with rationale. The stakeholder requesting the meeting will give as much advance notice of the meeting as possible and will ensure that all appropriate parties are available for the meeting.

Meeting notes will be taken by a CAPE Team member. The meeting notes will be transcribed to meeting minutes within a week and sent to attending parties as “Draft Final.” Attending parties will then have a week to review and make comments on the minutes. The CAPE Team will then incorporate comments and send the minutes out to the stakeholders as “Final.”
4.3 **Status Reports**

Status reports will consist of a monthly Summary Report submitted by CAPE to the USACE PM and will include an updated schedule, as appropriate. Status reports will be used by the CAPE Team to communicate project information to USACE.

At the completion of the project, the Contractor shall provide a complete set of project records including all correspondence, memorandums, e-mails, trip reports, sampling plans, test results, submittals, waste disposal documents, photographs, and any other records or documents generated as a result of the project. All electronic deliverables shall be in a format compatible with USACE software: All text documents shall be furnished in MS Word (.doc) and Adobe Acrobat (.pdf). Maps, graphics, and photographs generated for work plans and reports shall be provided in .pdf, .jpg, and GIS or Microstation formats.
5.0 COMMUNICATIONS MANAGEMENT

5.1 Communication Management

The USACE PM, Ms. Baker, will serve as the central point of communication for this Task Order. All communication with the Army will either be routed through Ms. Baker for distribution to the appropriate parties or will be sent directly to the recipient with Ms. Baker copied (based on direction from Ms. Baker). All communications with non-Army stakeholders will be routed through Ms. Baker for distribution to the appropriate parties. Regardless of the communication route, prior approval from Ms. Baker will be required. Ms. Baker will be back-briefed on any decisions or direction that results from direct communication (including phone calls) with customers and stakeholders, following his approval of such communication.

5.2 Communication Distribution

Distribution of communications is described below:

- Informal Communications – Documentation of informal communications between the CAPE Team and the project stakeholders will be either sent through or copied to the USACE PM (following USACE PM approval). Additionally, documentation of informal communications will be included with the Monthly Summary Reports, as appropriate.

- Meeting Agendas and Minutes – Meeting agendas and minutes will be distributed by the CAPE PM as “Draft Final” to the USACE meeting participants. After the agendas and minutes have been finalized, they will be distributed by the CAPE PM as “final” to all requested meeting attendees.

- Status Reports – Monthly Summary Reports and schedules will be prepared by the CAPE PM and submitted to the USACE PM each month. A complete set of project records will also be submitted at the completion of the project.

5.3 Communication and Document Storage

Communication and document storage will be conducted by the CAPE Team in accordance with Section 4.3 of the scope of work (SOW).

This will include plans, reports, and documentation of communication. Additionally, final submittals of plans and reports will be included within the Administrative Record as both hard and electronic copies.
6.0 PROCEDURES FOR SUBMITTAL AND REVIEW OF DELIVERABLES

Submittals under this Task Order include four general project plans – the CQCP, WP, PMP, APP/SSHP, this Communication Plan, SWMU/AOC-specific WPs and CMI Reports, and a Remedial Action Report. The SWMU/AOC-specific CMI Reports mentioned above will be submitted following completion of work at each site.

Effective communication between the stakeholders will be a necessary element for the success of the Task Order. To ensure that the delivery of the submittals and their reviews proceed as smoothly as possible, the following process is proposed for submittal and review. A work flow chart is included as Figure 2.

6.1 QCP, PMP, and Communication Plan

As the QCP, PMP, and Communication Plan were prepared in response to USACE’s protocols and not per regulatory requirement, these plans will only be submitted to USACE for review. These documents will be prepared as Draft Final and final submittals.

6.2 APP/SSHP

The APP/SSHP will be prepared via Draft Final, Draft Final final, and final submittals; the APP/SSHP will be reviewed by the SFAAP stakeholders prior to being finalized.

6.3 Site-Wide Work Plan

The WP will be prepared via Draft, Draft-Final, Final submittals; the WP will be reviewed by the SFAAP stakeholders prior to being finalized.

6.4 SWMU/AOC-Specific Reports and Plans

The site-specific work plans and CMI reports will be prepared via Draft Final, Draft Final final, and final submittals; they will be reviewed by the SFAAP stakeholders prior to being finalized.

Prior to initiating field work at a SWMU/AOC, CAPE will provide KDHE a minimum of 7-day notification using the following KDHE notification website:

http://www.kdheks.gov/remedial/fieldactivities/notification.html

Status Reports – Monthly Summary Reports and schedules will be prepared by the CAPE PM and submitted to the USACE PM and KDHE each month.

Problem resolution meetings will be held when special conditions warrant. They will be attended by at least the CQCSM and the related contractor personnel. The purpose of the meeting will be to define and discuss a problem, review potential solutions, and select an
appropriate solution. The meeting will be documented by the CQCSM, and will be transmitted to the appropriate organizations.
7.0 CONFLICT OF INTEREST MANAGEMENT PLAN

The over-arching purposes of this COI Management Plan are to ensure that the CAPE Team maintains awareness of potential COIs and manage project activities such that (a) project and personnel COIs are avoided (or mitigated); (b) confidentiality is maintained among project personnel where necessary; and (c) appropriate tracking occurs for corrective action taken to mitigate a determined COI. It is anticipated that the COI Plan, like the Communication Plan and the other basic documents, will be dynamic in nature such that it can be readily updated to reflect pertinent changes in the project as they may occur.

7.1 Scope

Please see Section 1.1 of this Communication Plan. A more detailed scope for the Task Order can be found in the PMP (CAPE, 2019).

7.2 Purpose

CAPE, under Contract Number W912DQ-16-D-3000 with the USACE, Kansas City District received a Task Order for performing construction services at the SFAAP. SRL is the current owner of the SFAAP property, and with the United States Army, is the current holder of the RCRA Facility Permit for the site. Following an informal review prior to issuance of this Task Order, it has been determined that a COI does not exist between USACE, BRAC, or the CAPE Team. If at any time, a Project Team member or stakeholder determines that there is a potential COI, then the procedures presented in Section 7.3 will be followed.

7.3 COI Procedures

If a potential COI is ascertained to be present by any of the Project Team members or stakeholders, the following procedure will be followed:

1. A memorandum will be prepared by the party who identified the potential COI and submitted to the USACE PM. The USACE Contract Specialist will also be copied on the memorandum. The memorandum will include a succinct description of the potential COI, the parties involved, and a proposed resolution.

2. The USACE PM will schedule a meeting or teleconference with the CAPE Team and any potentially-affected parties. The first priority of the meeting will be a determination if a COI is indeed present, and/or what other information may need to be gathered to make such determination. If a COI is determined to exist and all pertinent team members are present, the meeting attendees will either work towards a resolution of the COI or develop a plan for resolving the COI. Procedures for avoiding future COIs should also be addressed.
3. Upon completion of the meeting, the USACE PM, with support from the CAPE PMs, will prepare a memorandum for the project files detailing 1) the potential COI identified, 2) the parties involved, 3) the positive or negative determination of an actual COI, and 4) either the resolution of the COI or the plan for resolving the COI. If the result of the meeting is a plan for resolving the COI, then a time frame for the resolution should be included in the memorandum and a closure resolution added to the file when the COI is resolved.
FIGURES
Figure 1
Organization Chart
SFAAP
De Soto, Kansas