SOLOMON RIVER BASIN TOTAL MAXIMUM DAILY LOAD

Water Body: Logan City Lake
Water Quality Impairment: Eutrophication

Subbasin: Upper North Fork Solomon
County: Phillips
HUC 8: 10260011
HUC 11 (HUC 14): 050 (020)
Ecoregion: Central Great Plains, Rolling Plains and Breaks (27b)
Drainage Area: Approximately 2.5 square miles

Conservation Pool: Area = 23 acres
Watershed Area: Lake Surface Area = 69:1
Maximum Depth = 4.0 meters (13 feet)
Mean Depth = 1.7 meters (5.6 feet)
Retention Time = 0.2 years (2 months)

Designated Uses: Primary and Secondary Contact Recreation; Expected Aquatic Life Support; Food Procurement

Authority: City of Logan

2002 303(d) Listing: Solomon River Basin Lakes

Impaired Use: All uses are impaired to a degree by eutrophication

Water Quality Standard: Nutrients - Narrative: The introduction of plant nutrients into streams, lakes, or wetlands from artificial sources shall be controlled to prevent the accelerated succession or replacement of aquatic biota or the production of undesirable quantities or kinds of aquatic life. (KAR 28-16-28e(c)(2)(B)).

The introduction of plant nutrients into surface waters designated for primary or secondary contact recreational use shall be controlled to prevent the development of objectionable concentrations of algae or algal by-products or nuisance growths of submersed, floating, or emergent aquatic vegetation. (KAR 28-16-28e(c)(7)(A)).
2. CURRENT WATER QUALITY CONDITION AND DESIRED ENDPOINT

Level of Eutrophication: Hypereutrophic, Trophic State Index = 68.01

Monitoring Sites: Station 069301 in Logan City Lake (Figure 1).

Period of Record Used: One survey during 1989

Current Condition: In 1989, Logan City Lake had chlorophyll a concentrations averaging 45.5 \(\mu g/L \) and ranging from 38.2 \(\mu g/L \) to 52.7 \(\mu g/L \) (Appendix A). The Secchi Disc Depth was 0.25 meter. Nitrogen and phosphorus concentrations were not measured.

The Trophic State Index is derived from the chlorophyll a concentration. Trophic state assessments of potential algal productivity were made based on chlorophyll a concentrations, nutrient levels and values of the Carlson Trophic State Index (TSI). Generally, some degree of eutrophic conditions is seen with chlorophyll a concentrations over 7 \(\mu g/l \) and hypereutrophy.
occurs at levels over 30 $\mu g/l$. The Carlson TSI, derives from the chlorophyll concentrations and scales the trophic state as follows:

1. Oligotrophic \hspace{0.5cm} TSI < 40
2. Mesotrophic \hspace{0.5cm} TSI: 40 - 49.99
3. Slightly Eutrophic \hspace{0.5cm} TSI: 50 - 54.99
4. Fully Eutrophic \hspace{0.5cm} TSI: 55 - 59.99
5. Very Eutrophic \hspace{0.5cm} TSI: 60 - 63.99
6. Hypereutrophic \hspace{0.5cm} TSI: \geq 64

Interim Endpoints of Water Quality (Implied Load Capacity) at Logan City Lake over 2008 - 2012:
In order to improve the trophic condition of the lake from its current Hypereutrophic status, the desired endpoint will be to maintain summer chlorophyll a concentrations below 12 $\mu g/L$.

Current Condition and Reductions for Logan City Lake

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current Condition</th>
<th>TMDL</th>
<th>Percent Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Phosphorus Load (lbs/year)</td>
<td>440</td>
<td>15.9</td>
<td>96%</td>
</tr>
<tr>
<td>Total Phosphorus Concentration ($\mu g/L$)*</td>
<td>205</td>
<td>37</td>
<td>82%</td>
</tr>
<tr>
<td>Chlorophyll a ($\mu g/L$)</td>
<td>45.5</td>
<td>< 12</td>
<td>74%</td>
</tr>
</tbody>
</table>

* Predicted Concentrations from CNET model

3. SOURCE INVENTORY AND ASSESSMENT

Figure 2

Land Use: The watershed around Logan City Lake has a moderate potential for nonpoint source pollutants. An annual phosphorus load of 440 pounds per year is necessary to correspond to the concentrations seen in the lake.

One source of phosphorus within Logan City Lake is probably runoff from agricultural lands where phosphorus has been applied. Land use coverage analysis indicates that 29% of the watershed is cropland (Figure 2).
Nutrients from animal waste are a major contributing factor. Sixty-eight percent of land around the lake is grassland. Waste from animals grazing in the watershed adds to the phosphorus load going into Logan City Lake.

The City of Logan, which is located immediately outside of the watershed, anticipates a 19% population decrease by the year 2020. The average population density in the watershed is only 3.5 people per square mile. It is unlikely that urban runoff will contribute to the load.

A potential source is septic systems located around the lake. Failing septic systems can be a significant source of nutrients. The Phillips County has 968 septic systems, accounting for 30% of the sewage systems present in the county.

Figure 3

Logan City Lake Topographic Map

Contributing Runoff: The watershed’s average soil permeability is 1.5 inches/hour according to NRCS STATSGO database. About 79.5% of the watershed produces runoff even under relatively low (1.5”/hr) potential runoff conditions. Runoff is chiefly generated as infiltration excess with rainfall intensities greater than soil permeabilities. As the watersheds’ soil profiles
become saturated, excess overland flow is produced. Generally, storms producing less than 0.5"/hr of rain will generate runoff from 4.6% of this watershed, chiefly along the stream channels.

Background Levels: The atmospheric phosphorus and geological formations (i.e., soil and bedrock) may contribute to phosphorus loads. Nutrients from wildlife waste are another contributing factor. One percent of land in the watershed is woodland; leaf litter may be contributing to the nutrient loading.

4. ALLOCATION OF POLLUTANT REDUCTION RESPONSIBILITY

Total Phosphorus is allocated under this TMDL, because a phosphorus reduction will have a large effect on the managing the algal community. The Load Capacity is 15.9 pounds per year of phosphorus and was calculated using the CNET model. More detailed assessment of sources and confirmation of the trophic state of the lake must be completed before detailed allocations can be made. The general inventory of sources within the drainage does provide some guidance as to areas of load reduction.

Point Sources: A current Wasteload Allocation of zero is established by this TMDL because of the lack of point sources in the watershed. Should future point sources be proposed in the watershed and discharge into the impaired segments, the current wasteload allocation will be revised by adjusting current load allocations to account for the presence and impact of these new point source dischargers.

Nonpoint Sources: Water quality violations are partially due to nonpoint source pollutants. Background levels may be attributed to atmospheric deposition and geological sources. The assessment suggests that cropland and animal waste contribute to the elevated total phosphorus concentrations in the lake. Generally a Load Allocation of 14.3 pounds of total phosphorus per year, leading to a 96% reduction, is necessary to reach the endpoint.

Defined Margin of Safety: The margin of safety provides some hedge against the uncertainty of variable annual total phosphorus load and the chlorophyll a endpoint. Therefore, the margin of safety will be 1.6 pounds per year of total phosphorus, 10% of the load capacity, taken from the load capacity subtracted to compensate for the lack of knowledge about the relationship between the allocated loadings and the resulting water quality.

State Water Plan Implementation Priority: Because of the lack of recent monitoring data, this TMDL will be a Low Priority for implementation.

Unified Watershed Assessment Priority Ranking: Logan City Lake lies within the Upper North Fork Solomon (HUC 8: 10260011) which is in Category II (Watersheds Meeting Goals, Including Those Needing Action to Sustain Water Quality).
Priority HUC 11s: The HUC 11 (050) encompasses the Logan City Lake watershed, and thus this subwatershed should take priority.

5. IMPLEMENTATION

Desired Implementation Activities
There is good potential that agricultural best management practices will allow full use support to take place in Logan City Lake. Some of the recommended agricultural practices are as follows:

1. Implement nutrient management plans to grassland.
2. Implement soil sampling to recommend appropriate fertilizer applications on cropland.
3. Maintain conservation tillage and contour farming to minimize cropland erosion.
4. Install grass buffer strips along streams.
5. Reduce activities within riparian areas.
6. Implement nutrient management plans to manage manure application to land.

Implementation Programs Guidance

Nonpoint Source Pollution Technical Assistance - KDHE
a. Support Section 319 demonstration projects for reduction of sediment runoff from agricultural activities as well as nutrient management
b. Provide technical assistance on practices geared to establishment of vegetative buffer strips.
c. Provide technical assistance on nutrient management in vicinity of streams.
d. Update and implement nutrient and sediment abatement strategies.
e. Develop a Watershed Restoration and Protection Strategy for HUC 10260011.

Water Resource Cost Share Nonpoint Source Pollution Control Program - SCC
a. Apply conservation farming practices, including terraces and waterways, sediment control basins, and constructed wetlands.
b. Provide sediment control practices to minimize erosion and sediment and nutrient transport.

Riparian Protection Program - SCC
a. Establish or reestablish natural riparian systems, including vegetative filter strips and streambank vegetation.
b. Develop riparian restoration projects.
c. Promote wetland construction to assimilate nutrient loadings.

Buffer Initiative Program - SCC
a. Install grass buffer strips near streams.
b. Leverage Conservation Reserve Enhancement Program to hold riparian land out of production.
Extension Outreach and Technical Assistance - Kansas State University

a. Continue to educate residents and landowners about nonpoint source pollution.
b. Educate agricultural producers on sediment, nutrient, and pasture management.
c. Educate livestock producers on livestock waste management and manure applications and nutrient management planning.
d. Provide technical assistance on livestock waste management systems and nutrient management plans.
e. Provide technical assistance on buffer strip design and minimizing cropland runoff.
f. Encourage annual soil testing to determine capacity of field to hold phosphorus.

Time Frame for Implementation: Continued monitoring over the years from 2003 to 2008. After 2008, the monitoring results will be evaluated, and the allocations will be adjusted if needed.

Targeted Participants: Primary participants for implementation will be agricultural producers and residents who are within the drainage of the lake. A detailed assessment of sources will be conducted by KDHE over 2003-2008.

Milestone for 2008: The year 2008 marks the midpoint of the ten-year implementation window for the watershed. At that point in time, sampled data from Logan City Lake will be reexamined to confirm the impaired status of the lake. Should the case of impairment remain, source assessment, allocation, and implementation activities will ensue.

Delivery Agents: The primary delivery agents for program participation will be the City of Logan. Producer outreach and awareness will be delivered by Kansas State Extension.

Reasonable Assurances:

Authorities: The following authorities may be used to direct activities in the watershed to reduce pollutants.

1. K.S.A. 65-171d empowers the Secretary of KDHE to prevent water pollution and to protect the beneficial uses of the waters of the state through required treatment of sewage and established water quality standards and to require permits by persons having a potential to discharge pollutants into the waters of the state.

2. K.S.A. 2-1915 empowers the State Conservation Commission to develop programs to assist the protection, conservation and management of soil and water resources in the state, including riparian areas.

3. K.S.A. 75-5657 empowers the State Conservation Commission to provide financial assistance for local project work plans developed to control nonpoint source pollution.
4. K.S.A. 82a-901, et seq. empowers the Kansas Water Office to develop a state water plan directing the protection and maintenance of surface water quality for the waters of the state.

5. K.S.A. 82a-951 creates the State Water Plan Fund to finance the implementation of the *Kansas Water Plan*.

6. The *Kansas Water Plan* and the Solomon Basin Plan provide the guidance to state agencies to coordinate programs intent on protecting water quality and to target those programs to geographic areas of the state for high priority in implementation.

Funding: The State Water Plan Fund annually generates $16-18 million and is the primary funding mechanism for implementing water quality protection and pollutant reduction activities in the state through the *Kansas Water Plan*. The state water planning process, overseen by the Kansas Water Office, coordinates and directs programs and funding toward watersheds and water resources of highest priority. Typically, the state allocates at least 50% of the fund to programs supporting water quality protection. This watershed and its TMDL are a Low Priority consideration and should not receive funding.

Effectiveness: Nutrient control has been proven effective through conservation tillage, contour farming and use of grass waterways and buffer strips. The key to success will be widespread utilization of conservation farming and installation of buffer strips within the watersheds cited in this TMDL.

6. **MONITORING**
Additional data, to further determine source loading and mean summer lake trophic condition, would be of value prior to 2008. Further sampling and evaluation should occur twice before 2008.

7. **FEEDBACK**

Public Meetings: Public meetings to discuss TMDLs in the Solomon Basin were held January 7 and March 3, 2003 in Stockton. An active Internet Web site was established at http://www.kdhe.state.ks.us/tmdl/ to convey information to the public on the general establishment of TMDLs and specific TMDLs for the Solomon Basin.

Public Hearing: A Public Hearing on the TMDLs of the Solomon Basin was held in Stockton on June 2, 2003.

Basin Advisory Committee: The Solomon Basin Advisory Committee met to discuss the TMDLs in the basin on October 3, 2002, January 7, March 3, and June 2, 2003.
Milestone Evaluation: In 2008, evaluation will be made as to the degree of implementation which has occurred within the watershed and current condition of Logan City Lake. Subsequent decisions will be made regarding the implementation approach and follow up of additional implementation in the watershed.

Consideration for 303(d) Delisting: The lake will be evaluated for delisting under Section 303(d), based on the monitoring data over the period 2008-2012. Therefore, the decision for delisting will come about in the preparation of the 2012 303(d) list. Should modifications be made to the applicable water quality criteria during the ten-year implementation period, consideration for delisting, desired endpoints of this TMDL and implementation activities may be adjusted accordingly.

Incorporation into Continuing Planning Process, Water Quality Management Plan and the Kansas Water Planning Process: Under the current version of the Continuing Planning Process, the next anticipated revision will come in 2004 which will emphasize revision of the Water Quality Management Plan. At that time, incorporation of this TMDL will be made into both documents. Recommendations of this TMDL will be considered in *Kansas Water Plan* implementation decisions under the State Water Planning Process for Fiscal Years 2004-2008.

Bibliography

Appendix A - Boxplot

![Boxplot for Logan City Lake Chlorophyll a](image)
Appendix B - Input for CNET Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value Input into CNET Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area (km²)</td>
<td>6.4</td>
</tr>
<tr>
<td>Precipitation (m/yr)</td>
<td>0.56</td>
</tr>
<tr>
<td>Evaporation (m/yr)</td>
<td>1.47</td>
</tr>
<tr>
<td>Unit Runoff (m/yr)</td>
<td>0.02</td>
</tr>
<tr>
<td>Surface Area (km²)</td>
<td>0.093</td>
</tr>
<tr>
<td>Mean Depth (m)</td>
<td>1.7</td>
</tr>
<tr>
<td>Depth of Mixed Layer (m)</td>
<td>1.7</td>
</tr>
<tr>
<td>Depth of Hypolimnion (m)</td>
<td>0.5</td>
</tr>
<tr>
<td>Observed Phosphorus (ppb)</td>
<td>N/A</td>
</tr>
<tr>
<td>Observed Chlorophyl-a (ppb)</td>
<td>45.5</td>
</tr>
<tr>
<td>Observed Secchi Disc Depth (m)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Output from CNET Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Output from CNET Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Capacity (LC)*</td>
<td>15.9 lb/yr</td>
</tr>
<tr>
<td>Waste Load Allocation (WLA)</td>
<td>0 lb/yr</td>
</tr>
<tr>
<td>Load Allocation (LA)</td>
<td>14.3 lb/yr</td>
</tr>
<tr>
<td>Margin of Safety (MOS)</td>
<td>1.6 lb/yr</td>
</tr>
</tbody>
</table>

*LC = WLA + LA + MOS

Approved Sep. 30, 2003